Rwanda’s Nyungwe Forest
The land use changes in Rwanda’s Nyungwe Forest have been minimal since 2017 according to Esri’s Sentinel-2 land use series of processed Landsat satellite images.
The land use changes in Rwanda’s Nyungwe Forest have been minimal since 2017 according to Esri’s Sentinel-2 land use series of processed Landsat satellite images.
Delphi Analytics Rwanda recently received some data from an administrator of finance institutions in Rwanda (our ‘Client’). And, in order to add value to the data received, Delphi needed to make progress in two distinct areas that bear discussion, Data Organization and Data Enhancement. These areas of progress are very common in many data projects, so we decided that we would discuss these common challenges in this brief post. Our… Read More »Data Organization and Enhancement
Delphi is, at it’s core, built around an understanding of analytics. Data can come in all sizes and types; big-data – with it’s unique challenges and tools, medium-sized data – the old style data-base access we used to think were big, and unstructured data – the types of data that drives us crazy. Delphi does data – all types.
Delphi takes deep-dives into data, on either a project basis (with a limited scope or duration) or on a subscription basis (we provide an on-going service, with repeated flows and reporting). We’ve undertaken projects with all types of data in strange and wonderful markets – and we’ve taken subscription projects that are decades in duration. We love challenges.
In general Delphi’s analytical services fall into one of the following categories:
These are explained below.
Delphi has been called upon to support major litigation among counterparts at the highest level. Global institutions and government regulators have called upon Delphi to act as expert witness and quantitative ‘story-teller’ in complex litigation scenarios. If there is a story that can be told from data, then Delphi is the party to find and tell that story with vivid detail.
Add Delphi to the litigation support team for confidence in understanding the data narrative.
Delphi can arrange for regular, complex flows of data to run through sophisticated analytics to provide regular management and oversight reporting.
Delphi builds reliable, auditable financial models for:
Delphi is a great team member for identifying opportunities to implement AI (Artificial Intelligence) and machine learning processes into a business flow to constantly improve processes.
This is often done by examining critical input values and measurable outcomes of business process for either internal process improvement, or for decision-making on customer relationship management issues. Which customers should you promote or treat with special care, or which customers are financially unattractive to your business? Delphi can help you answer these questions.
As part of a regular, AI-based regime for constant improvement, Delphi is a great partner for creating and implementing Champion / Challenger testing for assessing when and with whom processes and decision-making rubrics.
Delphi has specialized in complex networks since early in the 2000’s. These are networks of things – called ‘nodes’ that might be people, for example, which are linked together in various ways. People that are linked as Facebook friends, or that follow each other on Twitter are examples. Sometimes these networks are derived from phone call or text message data streams – or from e-mail contacts or from appearance at common events or on common lists, etc. There are many sources of complex-network data.
With data streams that comprise complex-network information, Delphi has been able to make significant contributions to insight based upon what we call ‘Community Analytics.’ Communities are the various groupings of people, for example, with tight clusters of common contacts.
Delphi has used complex-networks and community analysis in fraud network detection – and in identifying risks associated with network-proximity to clusters of other risky nodes. The common features of a social circle, for example, are often predictors of common behavior.
This general line of work has been called social-network analytics and it has been very useful for predicting common behaviors of groups. This includes marketing success, as well as contributing factors to credit scoring.
From a practical consideration, then has been very useful in such mundane efforts as skip-tracing in sub-prime auto finance populations.
Delphi gained a particular niche in the credit modeling world in the early 1990’s with its introduction of varied data supplements to credit scoring models.
Delphi’s machine-learning and behavioral modeling tools (e.g., the MANN model) allowed Delphi’s credit models, for example, to include many hundreds of variables. Models were enhanced as relevant data were added to the trove of information known about customers. Initially, those data supplements consisted of publicly available data (such as Bureau of Labor Statistics employment information by locale). But, these were soon expanded to incorporate things like magazine subscriptions and other affiliation data.
Recent proliferation of GIS (Geographic Information System) data allows models in boutique- and developing-markets to include crop information, water availability, proximity to transportation networks, etc. Delphi has established global systems of GIS data for supplementing behavior models in markets such as India, Myanmar, African states, and so forth.
Additionally, there are often ‘derivative’ data from a client’s own data sets that provide custom supplements that might not normally be considered as fields of use in behavior modeling. Delphi has maintained a position on the cutting edge of incorporating diverse sets of supplemental information in modeling.
The creation and development of intellectual property is important to Delphi. A search of the publicly available patent filings under the name of Craig M Allen (Delphi’s founder) results in the following entries. Encrypted Blockchain Object Transfers Using Smart Contracts Publication number: 20200177579 Abstract: Encrypted blockchain object transfers using smart contracts are provided herein. The present disclosure includes mechanisms for generating compliance certificates and their combined use with smart contracts in order… Read More »Patents
On certain occasions, a single publication opens up an enormous field of engagement. Such was the case with the publication of the MANN model papers. The ‘Multidimensional Analysis of Nearest Neighbors’ was characterized as a novel way of aggregating cohorts of borrowers into neighborhoods – or into collections that shared similar attributes. The initial paper was published as: Allen, Craig M., “Credit scoring and risk-adjusted pricing: a review of techniques,”… Read More »Cornerstone Publication – MANN
Obviously Delphi started its focus in the financial markets. But, it was fortunate to have been able to engage in some fairly innovative forays into very different spheres of work. One of the areas that was particularly enjoyable for Delphi involved the solving of problems with very physical characteristics – process control or process management. In the manufacture of certain products – say machined parts in the aerospace industry –… Read More »Statistical Process Control & Management